
Generation of two-mode entangled coherent states via a cavity QED system

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2009 J. Phys. A: Math. Theor. 42 225304

(http://iopscience.iop.org/1751-8121/42/22/225304)

Download details:

IP Address: 171.66.16.154

The article was downloaded on 03/06/2010 at 07:51

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/42/22
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 42 (2009) 225304 (8pp) doi:10.1088/1751-8113/42/22/225304

Generation of two-mode entangled coherent states via
a cavity QED system

Qing-Xia Mu, Yong-Hong Ma and Ling Zhou

School of physics and optoelectronic technology, Dalian University of Technology,
Dalian 116024, People’s Republic of China

E-mail: zhlhxn@dlut.edu.cn

Received 10 November 2008, in final form 29 March 2009
Published 15 May 2009
Online at stacks.iop.org/JPhysA/42/225304

Abstract
A scheme is presented for the generation of entangled coherent states in a
single-atom cavity-QED system. In the scheme, a three-level V -type atom
interacts dispersively with a two-mode cavity and is driven by a classical field.
We show that under large detuning conditions the cavity field can evolve into
maximally entangled coherent states when one cavity mode is initially prepared
in an odd coherent state. The effect of the cavity losses on the entanglement is
also studied.

PACS numbers: 03.67.Mn, 42.50.Dv

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Quantum superpositions of coherent states, the so-called Schrödinger cat states or entangled
coherent states (ECSs), have attracted considerable attention in the recent literature
[1–4]. Although coherent states are the closest quantum states to the classical depiction of a
harmonic oscillator, because of the quantum interference between the coherent components,
such superposition states can exhibit various nonclassical properties such as sub-Poissonian
statistics, two-mode squeezing and violations of the Cauchy–Schwarz inequalities [5].
Numerous schemes have been proposed for generating these coherent superpositions. In
[6], the nonlinear Mach–Zehnder interferometer is presented as a device whereby a pair
of coherent states can be transformed into an entangled superposition of coherent states.
Paternostro et al [7] show that ECSs can be produced via cross-phase modulation in a
double electromagnetically induced transparency regime. The ion-trap systems have also
been proposed to be a qualified candidate for the generation of such superposition states
[8–10]. Experimentally, Schrödinger cat states have been generated in atomic systems using
ion traps [11] and wave packets [12]. So far, in optical systems only Schrödinger kitten states
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Figure 1. Schematic diagram of a three-level atom in V configuration. Two cavity modes interact
with the transition |c〉 ↔ |a〉 and |b〉 ↔ |a〉, respectively, with the same detuning δ. Meanwhile,
the external field with Rabi frequency � drives the transition |c〉 ↔ |b〉 with detuning �.

with the form of a superposition of two coherent states with equal amplitude but different
phases, such as |ϕ〉 = |α〉 + |α eiθ 〉 with |α〉 � 1 have been produced in the laboratory [13].

Cavity quantum electrodynamics have been shown to be another promising environment
for the preparation of coherent superpositions. Gerry [14] has proposed a method for
generating Schrödinger cat states in a dispersive atom–cavity field interaction with a continuous
external pump field. Solano et al [15] have presented a scheme to generate ECSs through
the interaction of two cavity modes with a two-level atom. However, in their scheme the
two cavity modes interact with the same atomic transition and thus will put restrictions on
manipulation. In a recent paper, we have shown that a three-level �-type atom interacting
with a two-mode field can entangle the two cavity modes under large detuning conditions [16].
Most recently, our group proposed that ECSs can be generated when considering a three-level
V -type atom interacted with a doubly resonant cavity driven by classical fields [17]. But the
atom detection is needed in these two schemes, and the decay of the excited level will destroy
the entanglement in [17].

In this paper, we suggested a scheme to generate ECSs based on the off-resonant
interaction of a three-level atom in V -type with a two-mode cavity driven by a classical
field. We show that maximally ECSs can be generated by one cavity mode initially prepared
in an odd coherent state. An analytical solution is also obtained when considering cavity
decay. Compared with our recent research [16, 17], we do not need to detect the atom state.
Compared with [15], the cavity modes in our scheme interact with different atomic transitions
and thus can easily be manipulated.

2. The theoretical model and the generation of ECSs

To generate the desired effective interaction we will consider a three-level atom in V

configuration trapped inside an optical cavity as depicted in figure 1. The atomic levels
are |a〉, |b〉 and |c〉 with the corresponding energies ωa, ωb and ωc. The allowed transitions
|c〉 ↔ |a〉 and |b〉 ↔ |a〉 are excited off-resonantly by two cavity modes with the coupling
constants g1 and g2, respectively, and with the same detuning δ. The external field with Rabi
frequency � induces the dipole-forbidden transition |c〉 ↔ |b〉 with detuning �. � can be
realized by using a two-photon Raman transition via a fourth level [18].
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Under the rotating wave approximation, the Hamiltonian for this system in the interaction
picture can be written as (h̄ = 1)

HI = g1
(
a1σca + a

†
1σac

)
+ g2

(
a2σba + a

†
2σab

)
+ �

(
σbc ei�t + σcb e−i�t

)
+ δ(σbb + σcc), (1)

where σij = |i〉〈j 〉(i, j = a, b, c) are atomic operators. δ = ωc−ωa−ω1 = ωb−ωa−ω2,� =
ω0 − (ωc − ωb); ω1 and ω2 are frequencies of the two cavity modes described respectively
by the annihilation (creation) operators a1

(
a
†
1

)
and a2

(
a
†
2

)
, and ω0 is the frequency of the

classical field. Considering the equation of motion for the atomic operators σca and σba

i
dσca

dt
= g1a

†
1(σcc − σaa) + g2a

†
2σcb − � ei�tσba − δσca,

i
dσba

dt
= g2a

†
2(σbb − σaa) + g1a

†
1σbc − � e−i�tσca − δσba,

(2)

if the frequency detuning is sufficiently large, i.e., δ � g1, g2,�,�, we can obtain the
adiabatic solutions for σca and σba by setting i dσca

dt
= i dσba

dt
= 0 [19]. Substituting σca, σba

and their Hermitian conjugates into Hamiltonian equation (1), we have

Heff = �(σbc ei�t + σcb e−i�t ) + δ(σbb + σcc)

+
1

δ2 − �2

{
δg2

1

(
2a

†
1a1 + 1

)
(σcc − σaa) + δg2

2

(
2a

†
2a2 + 1

)
(σbb − σaa)

−�g1g2
(
a1a

†
2 ei�t + a

†
1a2 e−i�t

)
(σbb + σcc − 2σaa)

−�
[(

g2
1a1a

†
1 + g2

2a
†
2a2

)
ei�tσbc +

(
g2

1a
†
1a1 + g2

2a2a
†
2

)
e−i�tσcb

]

+ 2σg1g2
(
a1a

†
2σcb + a

†
1a2σbc

)}
. (3)

If the initial state of the atom is prepared in the ground state |a〉, it will be confined in this
state, and the cavity field is decoupled with the atomic part since only σaa will have action
on |a〉 when we substitute equation (3) into |ϕ(t)〉 = e−iHeff t |a〉. In this case, the effective
Hamiltonian describing the evolution of the cavity field is

Ha = − δ

δ2 − �2

[
g2

1

(
2a

†
1a1 + 1

)
+ g2

2

(
2a

†
2a2 + 1

)]
+ λ

(
a1a

†
2ei�t + a

†
1a2 e−i�t

)
, (4)

where λ = 2g1g2�

δ2−�2 . Next we choose H 0
a = − δ

δ2−�2

[
g2

1

(
2a

†
1a1 + 1

)
+ g2

2

(
2a

†
2a2 + 1

)]
,H 1

a =
λ
(
a1a

†
2 ei�t + a

†
1a2 e−i�t

)
, then perform the unitary transformation U = e−iH 0

a t on H 1
a and

obtain

HI
a = λ

(
a1a

†
2 ei(�−ε)t + a

†
1a2 e−i(�−ε)t

)
, (5)

where ε = 2δ(g2
2−g2

1)

δ2−�2 . With the choice of the parameter � = ε we have the evolution of the
cavity field given by the Hamiltonian

HI
a = λ

(
a1a

†
2 + a

†
1a2

)
. (6)

We recognize such a field Hamiltonian is a generator of SU(2) coherent state if acting on the
initial number state |0, N〉 [20]. However, the Hamiltonian cannot entangle the initial coherent
state, since the time evolution of the system is

|(t)〉 = e−iHI
a t |(0)〉 = ex+K+ eK0lnx0 ex−K−|(0)〉, (7)

where x+ = x− = − tanh iλt, x0 = (cosh iλt)−2. These operators satisfy the SU(2)
commutation relations, i.e. [K0,K+] = K+, [K0,K−] = −K−, [K+,K−] = 2K0, with K+ =
a
†
1a2,K− = a1a

†
2 and K0 = 1

2

[
a
†
1a1 − a

†
2a2

]
. If the initial state is |α1, α2〉, with |αi〉 = e−|αi |2/2

∑∞
n=0

(αi )
n√

n!
|n〉 being a coherent state of amplitude αi , a direct calculation shows that

|(t)〉 = ex+K+ eK0lnx0 ex−K−|α1, α2〉 = |α̃1, α̃2〉, (8)
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with α̃1 = α1 cos λt − iα2 sin λt, α̃2 = α2 cos λt − iα1 sin λt . Obviously, it is not an entangled
state.

In order to generate ECS, we consider the cases that cavity mode 1 is initially prepared in
the even or odd coherent states |φ±(α)〉 = N±(|α〉 ± | − α〉), with the normalization factors
N± = (

2 ± 2 e−2|α|2)−1/2
. The even or odd coherent states |φ±(α)〉 can be generated by

sending Rydberg atoms passing through this two-mode cavity and interacting dispersively
with cavity mode 1 (initially prepared in a coherent state |α〉), as reported in [21]. By proper
selection of the atomic velocity, one can produce a Schrödinger cat state in cavity mode 1 after
the atom detection [21]. We assume cavity mode 2 is in the vacuum state |0〉, then the whole
initial state for the cavity field can be expressed as

|�(0)〉± = N±(|α〉 ± | − α〉) ⊗ |0〉. (9)

After an interaction time t, the state evolves into

|�(t)〉± = N±(|α cos λt,− iα sin λt〉 ± | − α cos λt, iα sin λt〉). (10)

In this way, we obtain a system of ECSs [6], which are themselves examples of two-mode
cat states of even and odd type [5]. We now try to estimate the entanglement between
two cavity modes. Although the entanglement criteria for the continuous variable system
have been studied in [22, 23], they are still difficult to measure the entanglement of ECSs.
Here, we quantify the entanglement of the two cavity modes by the familiar concept of
concurrence [24], which has been generalized for judging ECSs by rebuilding two orthogonal
and normalized states as a basis of the two-dimensional Hilbert space using original two
coherent states [25, 26]. In our scheme, we can define the orthogonal and normalized
basis as |0〉 = |α cos λt〉, |1〉 = (| − α cos λt〉 − P1|α cos λt〉)/M1 with P1 = 〈α cos λt | −
α cos λt〉 = e−2|α|2 cos2 λt ,M1 =

√
1 − |P1|2 for cavity mode 1, and |0〉 = |− iα sin λt〉, |1〉 =

(|iα sin λt〉 − P2| − iα sin λt〉)/M2 with P2 = 〈− iα sin λt | iα sin λt〉 = e−2|α|2 sin2 λt ,M2 =√
1 − |P2|2 for cavity mode 2. In this discrete basis, the concurrence of state equation (10)

can be calculated as

C± =
√

(1 − e−4|α|2 cos2 λt )(1 − e−4|α|2 sin2 λt )

1 ± e−2|α|2 , (11)

where +(−) means that cavity mode 1 is initially in the even (odd) coherent state. The average
photon numbers of the two cavity modes can be easily derived as

〈
a
†
1a1

〉
± = |α|2 cos2(λt)

1 ∓ e−2|α|2

1 ± e−2|α|2 ,
〈
a
†
2a2

〉
± = |α|2 sin2(λt)

1 ∓ e−2|α|2

1 ± e−2|α|2 . (12)

We plot the evolution of concurrence C− (figure 2) and C+ (figure 3) for different values
of |α|. Figure 2 shows that C− periodically reaches the maximal value 1 at the evolution
times λt = (2n + 1)π/4(n = 0, 1, . . .) for any intensity values |α|. Therefore, the maximally
entangled coherent states of the two cavity modes can be prepared from the initial odd coherent
state. Figure 3 shows that C+ oscillates with time, and the maximal values increase with the
increase of |α|. One can clearly see it from the expression of equation (11). If cavity mode 1 is
initially prepared in an odd coherent state, equation (11) shows that the two cavity modes evolve
into the maximally ECSs when sin λt = cos λt , namely λt = (2n + 1)π/4(n = 0, 1, . . .).
Furthermore, when |α| is large enough, e−2|α|2 ≈ 0, and then equation (11) shows C+ = 1
at time λt = (2n + 1)π/4(n = 0, 1, . . .), so that we can approximately obtain the maximally
ECSs if cavity mode 1 is initially prepared in the even coherent state. In fact, from numerical
calculation, we find that when |α| is very large the dynamics of the entanglement between the
two cavity modes are almost the same for C− and C+.
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Figure 2. Concurrence C− versus dimensionless time λt/π for (1)|α| = 0.5 (dotted line),
(2) |α| = 1.7 (solid line).
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Figure 3. Concurrence C+ versus dimensionless time λt/π for (1)|α| = 0.5 (dotted line),
(2) |α| = 1.7 (solid line).

Next, we discuss the relation between the concurrence and the average photon numbers
in two cavity modes. Comparing equation (11) and equation (12), we can clearly find that
when the average photon numbers are equal, the concurrence reaches the maximum value.
However, the concurrence will be zero as long as the average photon number in one of the
cavity modes is zero. Take the case that cavity mode 1 is initially prepared in the even coherent
state as an example; figure 4 clearly shows this point. In figure 4, the average photon numbers
of two cavity modes oscillate with time and reach the maximal value alternately. When the
photon number of one cavity mode reaches the maximal value, the photon number of the other
cavity mode must be zero, then the concurrence vanishes. That is because it is the correlation
between the two cavity modes that gives rise to the entanglement, if the average photon
number in one of the modes vanishes, then the correlation no longer exists and the concurrence
vanishes.
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Figure 4. The time evolution of concurrence C+ (solid line), average photon number 〈a†
1a1〉+

(dashed line) and 〈a†
2a2〉+ (dotted line) for the case that cavity mode 1 is initially prepared in the

even coherent state, where |α| = 1.2.

3. The effect of cavity decay on the entanglement between two cavity modes

In this section, the effect of the cavity losses on the entanglement is studied. Taking into
account the dissipations of each mode in the vacuum environment that we obtain the motion
equation of the density operator as

ρ̇ = − iλ
(
a1a

†
2ρ − ρa1a

†
2 + a

†
1a2ρ − ρa

†
1a2

)
+

κ

2

2∑

i=1

(
2aiρa

†
i − a

†
i aiρ − ρa

†
i ai

)
. (13)

For simplicity, we assume the two cavity modes have the same decay rate κ . Using the
superoperator [27] technique and the su(2) Lie algebra [28], the analytical solution of the
system with the initial state equation (9) can be obtained as

ρ±(t) = N2
±
[∣∣α e− κt

2 cos λt,−iα e− κt
2 sin λt

〉〈
α e− κt

2 cos λt,−iα e− κt
2 sin λt

∣∣

+
∣∣−α e− κt

2 cos λt, iα e− κt
2 sin λt

〉〈 − α e− κt
2 cos λt, iα e− κt

2 sin λt
∣∣

± e−2|α|2(1− e−κt )
(∣∣α e− κt

2 cos λt,−iα e− κt
2 sin λt

〉〈 − α e− κt
2 cos λt, iα e− κt

2 sin λt
∣∣

+
∣∣−α e− κt

2 cos λt, iα e− κt
2 sin λt

〉〈
α e− κt

2 cos λt,−iα e− κt
2 sin λt

∣∣)]. (14)

When k = 0, which means that there are no cavity losses, we find the state equation (14) is
exactly the same as equation (10). We still use the concurrence to measure the entanglement.
The qubits for each cavity mode should be redefined as

|0〉 = ∣∣α e− κt
2 cos λt

〉
,

|1〉 =
∣∣−α e− κt

2 cos λt
〉 − P1

∣∣α e− κt
2 cos λt

〉

M1
, for cavity mode 1,

|0〉 = ∣∣−iα e− κt
2 sin λt

〉
,

|1〉 =
∣∣iα e− κt

2 sin λt
〉 − P2

∣∣ − iα e− κt
2 sin λt

〉

M2
, for cavity mode 2, (15)

with

P1 = 〈
α e− κt

2 cos λt
∣∣ − α e− κt

2 cos λt
〉 = exp{−2|α|2 e−κt cos2 λt}, M1 =

√
1 − |P1|2,

6
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Figure 5. The time evolution of concurrence C+ when considering cavity decay for κ/λ = 0.1
(dotted line) and κ/λ = 0.5 (solid line) when |α| = 1.2.

P2 = 〈−iα e− κt
2 sin λt

∣∣iα e− κt
2 sin λt

〉 = exp{−2|α|2 e−κt sin2 λt}, M2 =
√

1 − |P2|2.
(16)

Then the concurrence corresponding to equation (14) is found as

C± = 2N2
±M1M2 e−2|α|2(1− e−κt ). (17)

In figure 5, we plot the time evolution of the concurrence C+ as an example in the presence
of cavity losses. Not surprisingly, the amplitude of concurrence decreases with the increase
of κ . The entanglement of the two cavity modes is gradually reduced by the effect of the
environment. Therefore, a high-Q two-mode cavity is preferred in our scheme.

4. Conclusion

In conclusion, we have presented a scheme to generate ECSs by employing a three-level
V -type atom with a two-mode field driven by an external laser field. It is shown that when
the atom is prepared in the ground state |a〉, the two cavity modes can evolve into the ECSs.
In particular, we find that maximally ECSs of two cavity modes can be generated if one
cavity mode is initially prepared in an odd coherent state. The effect of cavity decay on the
entanglement is also investigated by using concurrence.
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